
A Survey on Performance Modelling and
Optimization Techniques for SpMV on GPUs

Ms. Aditi V. Kulkarni#1, Prof. C. R. Barde*2
#Student, Department of Computer Engineering, G.E.S’s. R.H. Sapat College of Engineering Nashik,

Affiliated to University of Pune, India.
*Assistant Professor, Department of Computer Engineering, G.E.S’s. R.H. Sapat College of Engineering Nashik,

Affiliated to University of Pune, India.

Abstract— Sparse Matrix is a matrix consisting of very few
non-zero entries. Large sparse matrices are often used in
engineering and scientific operations. Especially sparse-matrix
vector multiplication is an important operation for solving
linear system and partial differential equations. However,
there is a possibility that even though the matrix is partitioned
and stored appropriately, the performance achieved is not
significant. Hence a need arises to address these issues. System
proposes an integrated analytical and profile based
performance modelling that accurately predicts the kernel
execution time of various SpMV CUDA kernels and also that
of a given target sparse-matrix. Based on this the designed
optimal solution auto-selection algorithm automatically
reports the SpMV optimal solution for a target sparse-matrix.
System was evaluated on NVIDIA Tesla C2050 and significant
results were obtained. Proposed system would like enhance the
existing system by trying the same on different SpMV CUDA
kernels as well look for optimization. Proposed system would
also like to try and execute the same on multi-GPU kernels.
Proposed system would also like to evaluate the existing
system on other NVIDIA GPU such as the NVIDIA GeForce
GT 750M card. This paper presents a survey of various
performance modelling and optimization techniques for
SpMV CUDA kernels on GPUs. It also presents a survey of the
various SpMV CUDA kernel implementation techniques.

Keywords—SpMV, GPU, CUDA, performance modelling,
optimization.

I. INTRODUCTION

 Sparse Matrix is a matrix consisting of very-few non-
zero elements. Large sparse-matrices are used in various
engineering and scientific applications. Sparse matrix-
vector multiplication is a very important operation when it
comes to solving linear system and partial differential
equations. When solving matrix-vector multiplication
operations the term Ax of the equation Ax=y needs to be
computed iteratively, which is tedious when it comes to
large sparse-matrices. Hence a need for storing and
partitioning the matrix arises. Again after storing and
partitioning the matrix, the performance achieved is not
significant. Hence the need to address these issues as well.
Various SpMV CUDA kernel implementations,
performance modelling and optimization techniques have
been proposed.
 In this paper, the following sections present an extensive
literature survey of the various performance modelling and
optimization techniques for SpMV CUDA kernels on GPUs.
It also presents a survey of various SpMV CUDA kernel

implementations techniques on GPUs. A kernel in CUDA is
a simple single program implemented and executed using
parallel thread. But a prior to it a brief information on
sparse-matrix, matrix storage and sparse-matrix vector
multiplication is presented.
A. Sparse Matrix
 A sparse matrix is a matrix in which very few elements
are non-zero as shown in figure 1. On the contrary, if very
few elements are zero, then the matrix is a dense matrix.
The fraction of zero elements in a matrix is called the
sparsity while the fraction of non-zero elements is called
dense. Sparsity is used in combinatorics and applications
like network theory. Large sparse matrices are often used in
engineering and scientific operations. Special algorithms
and data structures are required to store and manipulate
sparse-matrices on a computer. This is because standard
dense-matrix structures and algorithms are slow and
inefficient. Sparse data is more easily compressed and thus
require significantly less storage. [24].
B. How is a sparse-matrix stored?
 A matrix is stored as a two-dimensional array. Each entry
in the array represents an element of the matrix and
is accessed by the two indices and where, is the row
index, numbered from top to bottom, and is the column
index, numbered from left to right. For a matrix, the
amount of memory required to store the matrix in this
format is proportional to . [24].
C. Sparse Matrix Vector Multiplication
 Sparse matrix-vector multiplication (SpMV) of the form
y = Ax is a widely used computational kernel existing in
many scientific applications. The input matrix A is sparse.
The input vector x and the output vector y are dense. In case
of repeated y = Ax operation involving the same input
matrix A but possibly changing numerical values of its
elements, A can be preprocessed to reduce both the parallel
and sequential run time of the SpMV kernel. [25].

II. RELATED WORK

A. SpMV CUDA Kernel Implementations

 J. Bolz et al. [5]. This work proposes and implements
two basic SpMV CUDA computational kernels viz. a sparse
matrix conjugate gradient solver and a regular-grid
multigrid solver. Through this work it was observed that
real-time applications ranging from mesh smoothing and
parameterization to fluid solvers and solid mechanics can

Aditi V. Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7577-7582

www.ijcsit.com 7577

greatly benefit from these. As a matter of proof the
implementation was used in the example applications of
geometric flow and fluid simulation running on NVIDIA’s
GeForce FX. [5].

Figure.1. Sparse matrix representations for a simple example matrix A.
Padding entries (marked _) are set to zero. Courtesy: Bell and Garland [2].

 N. Bell and M. Garland [2]. This work proposed and
implemented SpMV CUDA kernels for some well-known
storage formats such as DIA, CSR, ELL, COO and HYB.
[2]. They are as follows:

1) Diagonal Format
 The diagonal format is formed by two arrays: data and
offsets. The data array stores the nonzero values, and the
offsets array, stores the offset of each diagonal from the
main diagonal. Diagonals above the main diagonal have
positive offsets and below the main diagonal have negative
offsets, accordingly. [2]
2) ELL Format
 The ELL format is more general than DIA as the non-
zero columns do not follow any particular pattern. It is in
particular well-suited for vector architectures. An
sparse matrix with at the most K nonzeros per row is stored
as a dense array data of nonzeros and array indices
of column indices. All rows are zero-padded to length K. [2]
3) Compressed Sparse Row Format
 The compressed sparse row (CSR) format explicitly
stores column indices and nonzero values in arrays indices
and data. A third array of row pointers, ptr, allows the CSR
format to represent rows of varying length. [2]
4) Coordinate Format
The coordinate (COO) format is a storage scheme. The
arrays: row, indices, and data store the row indices, column
indices, and values, respectively, of the nonzero entries. It
is assumed that entries with the same row index are stored
contiguously. [2]

5) Hybrid Format
 The ELLPACK format is well-suited to vector and SIMD
architectures, but its efficiency rapidly degrades when the
number of nonzeros per matrix row varies. On the contrary,
the storage efficiency of the COO format is invariant to the
distribution of nonzeros per row, and the use of segmented
reduction makes its performance largely invariant as well.
To gain the advantages of both, it is combined into a hybrid
ELL/COO format. The purpose of the hybrid (HYB) format
is to store the typical number of nonzeros per row in the
ELL data structure and the remaining entries of exceptional
rows in the COO format. The typical number of nonzeros
per row is often known a priori, as in the case of manifold
meshes, and the ELL portion of the matrix is readily
extracted. However, in the general case this number must be
determined directly from the input matrix. [2]

B. SpMV Optimization Techniques
 The following is a survey of various SpMV
Optimization techniques.
 P. Guo et al. [4]. In this work, an innovative
performance-model driven approach for partitioning sparse
matrix into appropriate formats, and auto-tuning
configurations of CUDA kernels to improve the
performance of SpMV on GPUs is presented. The
following are the features of the system: (a) It proposes an
empirical CUDA performance model to predict the
execution time of SpMV CUDA kernels. (b) It designs and
implements a model-driven partitioning framework to
predict how to partition the target sparse matrix into one or
more partitions and transform each partition into
appropriate storage format, which is based on the fact that
the different storage formats of sparse matrix can
significantly affect the performance of SpMV, and (c) It
integrates the model-driven partitioning with the existing
auto-tuning framework [3] to automatically adjust CUDA-
specific parameters to optimize performance on specific
GPUs. The approach was evaluated on 14 matrices using
NVIDIA’s GeForce GTX 295 and it was observed that
compared to the NVIDIA's existing implementations, the
approach showed a substantial performance improvement.
It had 222%, 197%, and 33% performance improvement on
the average for CSR vector kernel, ELL kernel and HYB
kernel, respectively. [4]
 J. Kurzak, W. Alvaro, and J. Dongarra [6].In this work,
optimized single precision matrix multiplication kernels are
presented for the short vector Single Instruction Multiple
Data architecture of the Synergistic Processing Element of
IBM’s CELL BE processor. The operations

and are implemented for
matrices of size elements. In the former case a
performance of 24.09 Gflop/s which is 94% of peak
performance is reported whereas in the latter case the
performance of 25.55 Gflop/s is reported, or 99.80% of the
peak, using as little as 5.9 kB of storage for code and
auxiliary data structures. [6].
 E. J. Im, K. Yelick, and R. Vuduc [7]. In this work, the
optimization of two operations viz. a sparse matrix times a
dense vector and a sparse matrix times a set of dense
vectors are discussed. It was found that register level

Aditi V. Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7577-7582

www.ijcsit.com 7578

optimizations are effective for matrices arising in certain
scientific simulations, especially finite-element problems.
The cache level optimizations find importance when the
vector used in multiplication is larger than the cache size,
especially for matrices in which the nonzero structure is
random. For applications involving multiple vectors,
reorganizing the computation to perform the entire set of
multiplications as a single operation produces significant
speedups. Also the different optimizations and parameter
selection techniques are described. These techniques are
evaluated on several machines using over 40 matrices taken
from broad set of application domains. The results showed
speedups of up to 4x for the single vector case and up to
10x for the multiple vector case. [7]
 M.M. Baskaran and R. Bordawekar [8]. In this work, the
various challenges in developing a high-performance
SpMV Kernel on CUDA GPUs are evaluated using the
CUDA programming model and also optimizations for the
same are proposed. The optimizations included: (a)
exploitation of synchronization-free parallelism, (b)
optimization of thread mapping based on the affinity
towards optimal memory access pattern, (c) optimized off-
chip memory access to tolerate the high access latency, (d)
exploitation of data reuse. The system was evaluated on two
classes of NVIDIA GPUs viz. GeForce 8800 GTX and
GeForce GTX 280. The system performance was compared
with that of existing parallel SpMV implementations viz. (a)
one from NVIDIA’s SpMV Library, (b) one from
NVIDIA’s CUDPP library, and (c) one implemented using
optimal segmented scan primitive. It was found that the
system outperformed the CUDPP and segmented scan
implementations by a factor of 2 to 8. It was also found that
the system achieved 15% improvement over NVIDIA’s
SpMV Library. [8].
 J. Demmel et al. [9]. In this work, two software systems
viz. ATLAS (Automatically Tuned Linear Algebra
Software) and BeBOP (formerly known as SPARSITY
version 2) are presented for dense and sparse linear algebra
kernels respectively. These softwares’ use heuristic search
strategies for exploring the architecture parameter space.
For optimization of these kernels the AEOS (Automated
Empirical Optimization of Software) is presented for both
the softwares ATLAS and BeBOP, for dense and sparse
operations respectively. It was found that through a
combination of automatic code generation and hand-coded
optimizations these packages deliver several factors
improvement over what even the best of compilers can
achieve on reference implementations. The SALSA
package which uses statistical data modelling as a tool for
automatic algorithm choice is also presented. The results
obtained showed great promise for the future of portable
adaptive high-performance libraries. [9].
 P. Guo and L. Wang [10]. In this work, an auto-tuning
framework that can automatically compute and select
CUDA parameters for SpMV to obtain the optimal
performance on specific GPUs is presented. The framework
was evaluated on two NVIDIA GPU platforms viz.
GeForce 9500 GTX and GeForce GTX 295. It was found
that, for GeForce 9500 GTX, the auto-tuning framework
had 237% performance improvement on the average, and

the median improvement was 278% and for GeForce GTX
295, the auto-tuning framework had 33% performance
improvement on the average, and the median improvement
was 25.6%, as compared to NVIDIA’s implementation, for
both cases. [10].
 F. Vazquez et al. [11]. In this work, new implementations
of SpMV for GPUs called ELLR-T is proposed and
evaluated. They are based on the format ELLPACK-R,
which allows storage of the sparse matrix in a regular
manner. The comparative evaluation with other systems
showed that the performance achieved by ELLR-T was the
best after an extensive study on a set of representative test
matrices. A comparison of ELLR-T on a GeForce GTX 285
had revealed that acceleration factors of up to 30x can be
achieved in comparison to optimized implementations of
SpMV which exploit state-of-the-art superscalar processors.
[11].
 D. Grewe and A. Lokhmotov [12]. In this work, a
system-independent representation of sparse matrix formats
is presented. It allowed a compiler to generate efficient,
system-specific code for sparse matrix operations. To show
the viability of such a representation a compiler that
generates and tunes code for sparse matrix-vector
multiplication (SpMV) on GPUs was developed.
Additionally, the format description also can be used to
automatically generate vectorized code to fully exploit the
capabilities of vector-architectures. The framework was
evaluated on six state-of-the-art matrix formats and it was
found that the generated code performed similar to or better
than hand-optimized code. It was observed that for every
single matrix the vector version clearly outperformed the
scalar version, with speedups of up to a factor of 4. The
average performance gain of vectorizing the code were 1.6x
(geometric mean). [12].
 Z. Wang et al. [13]. In this work, optimized
implementation of sparse matrix-vector multiplication on
NVIDIA GPUs using CUDA programming model is
presented. Three optimizations including: optimized CSR
storage format, optimized threads mapping, and avoid
divergence judgment are outlined to improve the
performance of SpMV kernels. The optimizations were
evaluated on GeForce 9600 GTX, connected to Windows
XP 64-bit system. In comparison with NVIDIA's SpMV
library and NVIDIA's CUDDPA library, it was observed
that the results showed that optimizing sparse matrix-vector
multiplication on CUDA achieved better performance than
other SpMV implementations. [13].
 X. Yang et al. [14]. In this work, a novel non-parametric
and self-tunable approach to data representation for
computing SpMV, particularly targeting sparse matrices
representing power-law graphs is presented. It was
observed that by using the real web graph data, the
representation scheme, coupled with a novel tiling
algorithm, yielded significant benefits over the state of the
art GPU efforts on a number of core data mining algorithms
such as PageRank, HITS and Random Walk with Restart.
On these algorithms, it was observed that the best kernel
was 1.8 to 2.1 times faster than an industrial strength GPU
competitor and from 18 to 32 times faster than a similar
CPU implementation. [14].

Aditi V. Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7577-7582

www.ijcsit.com 7579

 S. Williams et al. [23]. In this work, sparse matrix-vector
multiply (SpMV) is examined across a broad spectrum of
multicore designs. The experiments were evaluated on the
homogeneous AMD dual-core and Intel quad-core designs,
the heterogeneous STI Cell, as well as the first scientific
study of the highly multithreaded Sun Niagara2 platforms.
Several optimization strategies effective for the multicore
environment are presented, and significant performance
improvements compared to existing state-of-the-art serial
and parallel SpMV implementations are demonstrated. [23].

C. SpMV Performance Modelling Techniques
 There is extensive work on performance models.
 P. Guo and L. Wang [3]. This work presents an integrated
analytical and profile-based CUDA performance modelling
approach that accurately predicts the kernel execution times
of sparse matrix-vector multiplication for CSR, ELL, COO,
and HYB SpMV CUDA kernels. The experiments were
conducted on a collection of 8 widely-used testing matrices
on NVIDIA Tesla C2050 and the execution times predicted
by the model matched the measured execution times of
NVIDIA’s SpMV implementations. For 29 out of 32 test
cases, the performance differences were observed under or
around 7%. For the rest 3 test cases, the differences were
observed between 8% and 10%. For CSR, ELL, COO, and
HYB SpMV kernels, the differences were observed as 4.2%,
5.2%, 1.0%, and 5.7% on the average, respectively. [3].
 S. Ryoo et al. [15]. In this work, two metrics i.e.,
efficiency and utilization are introduced to reduce
optimization space. The model focuses on pruning
optimization space to reduce tuning time for a program. An
approach for attacking the complexity of optimizing code
for the NVIDIA GeForce 8 Series is proposed. Because
predicting the performance effects of program
optimizations is difficult, developers or compilers may need
to experiment to find the configuration with the best
performance. By plotting the configurations and examining
only those configurations on a Pareto-optimal curve, the
search space was ably reduced by up to 98% without
missing the configuration with the highest performance.
[15].
 J.W. Choi, A. Singh, and R.W. Vuduc [16]. In this work,
a performance model-driven framework for automated
performance tuning (autotuning) of sparse matrix-vector
multiply (SpMV) on systems accelerated by graphics
processing units (GPU) is presented. The study consists of
two parts. First, several carefully hand-tuned SpMV
implementations for GPUs is described, identifying key
GPU-specific performance limitations, enhancements, and
tuning opportunities. It was observed that these
implementations, that included variants on classical blocked
compressed sparse row (BCSR) and blocked ELLPACK
(BELLPACK) storage formats, matched or exceeded state-
of-the-art implementations. It was observed that the best
BELLPACK implementation achieved up to 29.0 Gflop/s in
single-precision and 15.7 Gflop/s in double precision on the
NVIDIA T10P multiprocessor (C1060), enhancing prior
state-of-the-art unblocked implementations by up to 1.8x
and 1.5x for single- and double precision respectively.
However, achieving this level of performance required

input matrix-dependent parameter tuning. Thus, in the
second part of the study, a performance model that guided
tuning was developed. This model required offline
measurements and run-time estimation, but more directly
modelled the structure of multithreaded vector processors
like GPUs. It was observed that the model could identify
the implementations that achieved within 15% of those
found through exhaustive search. [16].
 D. Schaa and D. Kaeli [17]. In this work, a modelling
framework is designed that produces accurate estimates
when moving single-GPU applications to a multiple-GPU
platform. The approach develops a set of performance
equations that capture many of the latencies and
dependencies introduced in a multiple-GPU environment.
The system was tested on six applications and the execution
time across multiple GPU applications with an average
difference of 11% was estimated when compared to actual
execution times. The validation study included applications
that have a wide range of execution durations. [17].
 S. Xu, W. Xue, and H. Lin [18]. In this work,
optimization of SpMV based on ELLPACK from two
aspects: (a) enhanced performance for the dense vector by
reducing cache misses, and (b) reduce accessed matrix data
by index reduction, is proposed. With matrix bandwidth
reduction techniques, both cache usage enhancement and
index compression can be enabled. For GPU with better
cache support, differentiated memory access scheme to
avoid contamination of caches by matrix data is proposed.
Performance evaluation showed that the combined
speedups of proposed optimizations for GT-200 are 16%
(single-precision) and 12.6% (double-precision) for GT-200
GPU, and 19% (single-precision) and 15% (double-
precision) for GF-100 GPU. [18].
 Y. Zhang and J. D. Owens [19]. In this work, a
microbenchmark-based performance model for NVIDIA
GeForce 200-series GPUs is developed. The model
identifies GPU program bottlenecks and quantitatively
analyses performance, and thus allows programmers and
architects to predict the benefits of potential program
optimizations and architectural improvements. The
microbenchmark-based approach is used to develop a
throughput model for three major components of GPU
execution time: the instruction pipeline, shared memory
access, and global memory access. Because the model is
based on the GPU’s native instruction set, the performance
can be predicted with a 5–15% error. To demonstrate the
usefulness of the model, three representative real-world and
already highly-optimized programs: dense matrix multiply,
tridiagonal systems solver, and sparse matrix vector
multiply were analysed. The model provided detailed
quantitative analysis on performance, which enabled
understanding of the configuration of the fastest dense
matrix multiply implementation and to optimize the
tridiagonal solver and sparse matrix vector multiply by 60%
and 18% respectively. [19].
 S.S. Baghsorkhi et al. [20]. In this work, a compiler-
based approach to application performance modelling on
GPU architectures is presented. The model is equipped with
an efficient symbolic evaluation module to determine the
effects of the structural conditions and complex memory

Aditi V. Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7577-7582

www.ijcsit.com 7580

access expressions on the performance of a GPU kernel.
This approach combines the effects of different
performance factors into a coherent framework. In cases
where it cannot statically determine performance
information, a parametric latency is derived which can be
customized later, according to the kernel inputs. In the case
of data dependent conditions or access patterns, it employs
a light-weight dynamic instrumentation approach to
specialize the parametric latency. This model allows a
compiler to determine the relative merits of parallel kernel
configurations without running all the variations. Also, the
model identifies the bottlenecks and can guide the compiler
through the optimization process. The performance model
was validated on the NVIDIA GPUs using CUDA for the
matrix multiply, prefix sum scan, FFT, and sparse matrix-
vector benchmarks. The evaluation showed that there was
good agreement between predicted and observed
performance rankings for the various tuning versions of
these kernels and that the model captured the effect of all
major performance factors for GPU architecture. [20].
 S. Hong and H. Kim [21]. This work proposes and
evaluates a memory parallelism aware analytical model that
estimates execution cycles for the GPU architecture. The
key idea of the analytical model is to find the maximum
number of memory warps that can execute in parallel, a
metric which is called MWP, to estimate the effective
memory instruction cost. The model calculates the
estimated CPI, that provides a simple performance
estimation metric for programmers and compilers to decide
whether they should perform certain optimizations or not.
The evaluations show that the geometric mean of absolute
error of the analytical model on microbenchmarks is 5.4%
and on GPU computing applications is 13.3%. [21].
 K. Kothapalli et al. [22]. This work presents a
performance model that combines several known models of
parallel computation viz. BSP, PRAM, and QRQW. The
model encompasses the various facets of the GPU
architecture like scheduling, memory hierarchy and
pipelining among others. The usage of the model and its
accuracy was illustrated with three case studies viz. Matrix
Multiplication, List Ranking, and histogram generation. [22]

III. PROPOSED SYSTEM

System proposes an integrated analytical and profile based
performance modelling that accurately predicts the kernel
execution time of various SpMV CUDA kernels and also
that of a given target sparse-matrix. Based on this the
designed optimal solution auto-selection algorithm
automatically reports the SpMV optimal solution for a
target sparse-matrix. System was evaluated on NVIDIA
Tesla C2050 and significant results were obtained
[1].Proposed system would like enhance the existing system
by trying the same on different SpMV CUDA kernels as
well look for optimization. Proposed system would also like
to try and execute the same on multi-GPU kernels.
Proposed system would also like to evaluate the existing
system on other NVIDIA GPU cards such as NVIDIA
GeForce GT 750M Notebook GPU.

IV. CONCLUSIONS

Sparse matrix thus is a matrix which has very few nonzero
elements. Sparse-matrix vector multiplication is a tedious
operation and when carried out iteratively becomes more
difficult. GPU eases this job however efficient storage
strategies, performance modelling and optimization
techniques are needed. Various SpMV CUDA kernels have
been proposed in this regard however still significant
achievement is not seen. System proposes and integrated
performance modelling and optimization analysis system
for SpMV CUDA kernels. Proposed system will enhance
the existing system and evaluate it on different NVIDIA
GPU card such as GeForce GT 750M and also try and
extend it to multi-GPU kernels. A detailed survey of all
possible SpMV performance modelling and optimization
techniques is presented in this work. We assume that the
above survey helps to better understand SpMV CUDA
kernel and it implementation including its performance
modelling and its optimization in a better way.

ACKNOWLEDGEMENT

 We are glad to express our sentiments of gratitude to all
who rendered their valuable guidance to us. We would like
to express our appreciation and thanks to Prof. Dr. P. C.
Kulkarni, Principal, G. E. S. R. H. Sapat College of Engg.,
Nashik. We are also thankful to Prof. N. V. Alone, Head of
Department, Computer Engg., G. E. S. R. H. Sapat College
of Engg., Nashik. We thank the anonymous reviewers for
their comments.
 We also acknowledge all the scientists, researchers,
scholars and the SpMV CUDA kernel development
community and fraternity who have taken efforts towards
the research and development of the SpMV CUDA kernel,
its implementation, optimization and performance
modelling.

REFERENCES
[1] P. Guo, L. Wang and P. Chen, “A Performance Modeling and

Optimization Analysis Tool for Sparse-Matrix Vector
Multiplication on GPUs”, IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 5, pp. 1112-1123, May 2014.

[2] N. Bell and M. Garland, “Implementing Sparse Matrix-Vector
Multiplication on Throughput-Oriented Processors,” Proc. Conf.
High Performance Computing Networking, Storage and Analysis
(SC’09), pp. 1-11, 2009.

[3] P. Guo and L. Wang, “Accurate CUDA Performance Modeling for
Sparse Matrix-Vector Multiplication,” Proc. IEEE Int’l Conf. High
Performance Computing and Simulation (HPCS ’12), pp. 496-502,
July 2012.

[4] P. Guo, H. Huang, Q. Chen, L. Wang, E.-J. Lee, and P. Chen, “A
Model-Driven Partitioning and Auto-Tuning Integrated Framework
for Sparse Matrix-Vector Multiplication on GPUs,” Proc. TeraGrid
Conf. Extreme Digital Discovery (TG ’11), pp. 2:1-2:8, 2011.

[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder, “Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid,” ACM
Trans. Graphics, vol. 22, no. 3, pp. 917-924, 2003.

[6] J. Kurzak, W. Alvaro, and J. Dongarra, “Optimizing Matrix
Multiplication for a Short-Vector Simd Architecture-Cell
Processor,” J. Parallel Computing, vol. 35, no. 3, pp. 138-150, 2009.

[7] E.-J. Im, K. Yelick, and R. Vuduc, “Sparsity: Optimization
Framework for Sparse Matrix Kernels,” Int’l J. High Performance
Computing Applications, vol. 18, no. 1, pp. 135-158, 2004.

[8] M.M. Baskaran and R. Bordawekar, “Optimizing Sparse Matrix-
Vector Multiplication on GPUs,” Research Report RC24704, IBM
TJ Watson Research Center, Dec. 2008.

Aditi V. Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7577-7582

www.ijcsit.com 7581

[9] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet,
R.C.W.R. Vuduc, and K. Yelick, “Self-Adapting Linear Algebra
Algorithms and Software,” Proc. IEEE, vol. 93, no. 2, pp. 293-312,
Feb. 2005.

[10] P. Guo and L. Wang, “Auto-Tuning CUDA Parameters for Sparse
Matrix-Vector Multiplication on GPUs,” Proc. Int’l Conf.
Computational and Information Sciences (ICCIS ’10), pp. 1154-
1157, 2010.

[11] F. Vazquez, G. Ortega, J.J. Fernandez, and E.M. Garzon,
“Improving the Performance of the Sparse Matrix Vector Product
with GPUs,” Proc. 10th IEEE Int’l Conf. Computer and Information
Technology (CIT ’10), pp. 1146-1151, 2010.

[12] D. Grewe and A. Lokhmotov, “Automatically Generating and
Tuning GPU Code for Sparse Matrix-Vector Multiplication from a
High-Level Representation,” Proc. ACM Fourth Workshop General
Purpose Processing on Graphics Processing Units (GPGPU-4), pp.
12:1-12:8, 2011.

[13] Z. Wang, X. Xu, W. Zhao, Y. Zhang, and S. He, “Optimizing
Sparse Matrix-Vector Multiplication on CUDA,” Proc. Second Int’l
Conf. Education Technology and Computer (ICETC ’10), vol. 4, pp.
V4-109-V4-113, June 2010.

[14] X. Yang, S. Parthasarathy, and P. Sadayappan, “Fast Sparse
Matrix-Vector Multiplication on GPUs: Implications for Graph
Mining,” Proc. VLDB Endowment, vol. 4, no. 4, pp. 231-242, Jan.
2011.

[15] S. Ryoo, C.I. Rodrigues, S.S. Stone, S.S. Baghsorkhi, S.-Z. Ueng,
J.A. Stratton, and W.-m.W. Hwu, “Program Optimization Space
Pruning for a Multithreaded GPU,” Proc. ACM Sixth Ann.
IEEE/ACM Int’l Symp. Code Generation and Optimization
(CGO ’08), pp. 195-204, 2008.

[16] J.W. Choi, A. Singh, and R.W. Vuduc, “Model-Driven Autotuning
of Sparse Matrix-Vector Multiply on GPUs,” Proc. 15th ACM

SIGPLAN Symp. Principles and Practice of Parallel Programming
(PPoPP ’10), pp. 115-126, 2010.

[17] D. Schaa and D. Kaeli, “Exploring the multiple-GPU Design
Space,” Proc. IEEE Int’l Parallel & Distributed Processing Symp.
(IPDPS ’09), pp. 1-12, May 2009.

[18] S. Xu, W. Xue, and H. Lin, “Performance Modeling and
Optimization of Sparse Matrix-Vector Multiplication on NVIDIA
CUDA Platform,” J. Supercomputing, vol. 63, pp. 710-721, 2013.

[19] Y. Zhang and J. Owens, “A Quantitative Performance Analysis
Model for GPU Architectures,” Proc. IEEE 17th Int’l Symp. High
Performance Computer Architecture (HPCA ’11), pp. 382-393, Feb.
2011.

[20] S.S. Baghsorkhi, M. Delahaye, S.J. Patel, W.D. Gropp, and W. -
M.W. Hwu, “An Adaptive Performance Modeling Tool for GPU
Architectures,” Proc. 15th ACM SIGPLAN Symp. Principles and
Practice of Parallel Programming (PPoPP ’10), pp. 105-114, 2010.

[21] S. Hong and H. Kim, “An Analytical Model for a GPU Architecture
with Memory-Level and Thread-Level Parallelism Awareness,”
Proc. 36th ACM Ann. Int’l Symp. Computer Architecture (ISCA ’09),
pp. 152-163, 2009.

[22] K. Kothapalli, R. Mukherjee, M. Rehman, S. Patidar, P. Narayanan,
and K. Srinathan, “A Performance Prediction Model for the CUDA
GPGPU Platform,” Proc. Int’l Conf. High Performance Computing
(HiPC ’09), pp. 463-472, Dec. 2009.

[23] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J.
Demmel, “Optimization of Sparse Matrix-Vector Multiplication on
Emerging Multicore Platforms,” Proc. ACM/IEEE Conf.
Supercomputing,2007.

[24] http://en.wikipedia.org/wiki/Sparse_matrix
[25] http://en.wikipedia.org/wiki/Sparse_matrix-vector_multiplication

Aditi V. Kulkarni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (6) , 2014, 7577-7582

www.ijcsit.com 7582

